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Abstract 
Hydrodynamical structure attending a flow can be hid and hardly to reveal. One of the 

methods to find them is to use mode decomposition (such as Proper orthogonal 
decomposition, POD). The method represents the field given as a series of spatial modes 
multiplied by corresponding temporal coefficients. In the article the method is discussed 
applyingly to a complex flow with a wave attractor structure. Attractor modes present 
structured vortex-like figure which cannot be claimed to be aleatory.  

As it turns out POD modes are not just a formal decomposition but have a physical origin: 
they are connected with instability cascade minor frequencies, as spectral investigation 
shows. Another consequence of that is that one of the collateral structure maximum can be 
visible. This proposition is proven as the structure is found to be visible in the flow itself.  
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1 Introduction 
It is known that there are systems where the ray-focusing phenomenon leads to the 

formation of specific structures called wave attractors. In such systems velocity magnitude 
(and kinetic energy) concentrates on a closed curve. This occurs because of specific dispersion 
relation (a wave conserves the angle with vertical axis rather than angle with the normal). 
Under such reflection law, ray focusing occurs just for geometrical reasons [1]. 

Since their discovery attractors were investigated in terms of main structure. But in 
recent work [2] vortex filaments in a system with inertial wave attractor were revealed due to 
vortex identification method. This experience makes us think that there can be other hid 
hydrodynamical structures. 

For that purpose we will use another method than vortex identification: a mode decom-
position. Being fed with a field, the method decomposes into characteristic modes, which can 
themselves be substructures of the flow. 

Proper orthogonal decomposition [3] represents the solution as a series of spatial modes 
multiplied by corresponding temporal coefficients. The modes are selected so that they are 
eigenvectors of the solution’s covariational matrix (solution matrix is a temporal slices 
(”snapshots”) on the discrete spatial positions). Eigenvectors corresponding different 
eigenvalues are orthogonal (that’s why the decomposition is called orthogonal). These modes 
can be used for dimension reduction, but we will be concentrated on the investigation of the 
modes obtained themselves. 

2 The problem set 
The problem of investigation came from the ocean dynamics. Comparatively recently the 

wave attractor phenomenon was discovered. It is a phenomenon of ray-focusing in liquid in 
the form of narrow curve where the fluid motion is concentrated, with the fluid remaining 
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almost steady outside it. The conditions an attractor appears under are periodic external 
force, sloping side and salinity gradient [1]. 

Soon after the discovering the phenomenon was examined experimentally. As Leo Maas 
showed in [4], the trapezium with one sloping is an object good enough for the describing of 
ongoing processes. In the simplest case the wave generated reflects from each border one 
times, forming rhomboid-shaped internal wave, called (1,1) attractor, correspondingly the 
number of reflections. It’s notable that coordinate of the rhomboid (reflection points) can be 
calculated analytically from external frequency and geometry. In [5] the method is introduced 
for (1,1) attractors; the recent work [6] generalizes it on (n,1) one.  The numerical 
investigation turned out to be close to the experimental results [1][7], the later works [8][9] 
diverges less than in 10%. 

In the pioneer works the external force was applied to the entire volume. Next, it was 
transferred to one of the sides [10] [11], which abled to provide a wider range of perturbations 
applied. The force was simulated via system called wave-maker that in the case consists of 
shafts and eccentrics providing discrete border perturbation. 

 

 
Figure 1: Scheme of domain geometry with attractor 

 
That was the main setup and principles of a problem we base on. We will consider the 

model problem as two-dimensional one, hence it saves computational resources while 
providing enough accuracy [12][13][14]. 

Let’s describe the setup to be simulated. The model region is a two-dimensional 
trapezium with one slope. Wave-maker is situated on the upper side, howbeit its position is 
not critical. 

The equations system to solve consists of: the Navier-Stocks equation in Boussinesq 
approximation: 
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and salt transport: 
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𝜌 = 𝜌𝑚 + 𝜌𝑠 (3) 
Here �̃� is a pressure minus its hydrostatical part at 𝜌𝑚, 𝜌𝑚 — density of fresh water, 𝜌𝑠 — 

dissolved salt density, 𝜆𝑠 — salt diffusivity coefficient. Initial stratification was linear: 

𝜌𝑠|𝑡=0 =
𝐻 − 𝑦

𝐻
𝜌𝑠0, 𝜌𝑠0 = const (4) 

The system is supplemented by the incompressible continuity equation: 



𝑑𝑖𝑣 �⃗�  =  0 
The 𝑥-axis is supposed to be directed along the smaller (lower) trapezia base and 𝑦 — 

along the vertical side wall. The scheme of the domain with the dimensions and schematic 
attractor curve is shown on Fig. 1. 

The initial condition for velocity is zero: 

�⃗�|𝑡=0 = 0⃗⃗ 
To emulate tidal forces a wave-maker was used. It perturbs one of the domain’s side 

harmonically. Its position is of no matter, we placed it at the top of the domain. 
Equation for border disturbance: 

𝑠(𝑥) = 𝑎 sin(𝜔0𝑡)sin (𝜋𝑥/𝐿) (5) 
where 𝑠(𝑥) is an upper border profile, where 𝑎and 𝜔0 are the external forcing parameters; 
spatially the perturbance has a form of a half a sine. As soon as the perturbation is much 
smaller than the domain height we can rewrite the condition (5) as a velocity condition: 

𝑎𝜔0cos(𝜔0𝑡)sin (𝜋𝑥/𝐿) (6) 
This allows us to solve the problem in a fixed area, which saves computational resources 

with a minimal lack of accuracy. 
On the other borders there are Dirichlet conditions for velocity. 

For the salt we have impermeability condition 
𝜕𝜌

𝜕𝑛
= 0 on all the boundaries. That’s why we 

smoothed initial salinity on upper and lower walls. 
Sizes of basin are: height 𝐻 = 40 cm, length 𝐿 =  60 cm, bottom length 𝐿1  =  3/4𝐿 =  45 

cm. Hence external force is periodic, we will also consider time values in units of its period 
𝑇0 (𝑇0  =  1/𝑓0 = 2𝜋/𝜔0). 

The problem was solved numerically via spectral element method (Nek5000 [15]); 
postprocessing was made using python3 codes. 

The feature of this problem is that such phenomenon as wave attractor can appear. It 
comes out as a closed curve the fluid motion is concentrated on. Fig. 2 shows the 
characteristical spatial distribution of the velocity in non-turbulent regime at a = 0.02 cm. 
The attractor is clearly visible. 

As to temporal evolution, the velocity has oscillation with amplitude slightly modulated, 
with the exit to the saturation (Fig. 3). 

 

 
Figure 2: Vertical velocity component 𝑣𝑦 

distribution, a = 0.02 cm 

Figure 3: 𝑣𝑦 evolution in the point 

mapped, a = 0.02 cm 

3 POD application 
For spatial mode extraction we applied Proper orthogonal decomposition [3]. The 

method decompose field into orthogonal modes timed by temporal coefficients: 
𝑢 ≈ ΣΦ𝑖(𝑥, 𝑦)𝑇𝑖(𝑡) (7) 

so that the covariance between modes tends to minimum. For numerical analysis we use 
intrinsic python scikit library code [16]. It turns out the streamlines of the modes will be 



more useful for representation rather than components, thus POD is made for both velocity 
component simultaneously. 

POD decomposition seems to work suitable hence the spectrum of the flow is discrete, as 
Fig. 4 shows, which mean that the flow consists of a number of harmonics, and the 
decomposition 7 is physically justified. This occurs because of triadic resonance cascade in 
such system, whose presence in the system was previously proved [17][18][7] [19]. With such 
small external force amplitude at the harmonic on the externa force frequency 𝑓0 dominates. 

 

 
Figure 4: Energy spectrum of 𝑣𝑦 

 
For the numerical investigation we used data on an interpolated uniform spatial grid 

(150x101 points) and 900 temporal snapshots. 
Being applied to the solution, POD yields curious results. Alongside with the attractor 

mode (Fig. 5), which is supposed to be, there is several ordered vortex structures. The most 
powerful (in terms of energy share of the total one) one is those with four vortices oriented 
diagonally (Fig. 6). It’s energy is notably high (39.5%), which makes it to be a regular and 
important structure rather than a relic. 

Remaining modes are of some interest, and their existence could hardly be proposed. 
They presents two to four vortices (Fig. 7-9) located one over another (’vortex stack’). They 
have vanishingly small energy, but their ordered structure does not allow to consider them as 
an in-significant noise. 

 

  
Figure 5: 1st eigenmode. Attractor  

structure 
Figure 6: 2nd eigenmode.  

Quadrivorticular diagonal structure. 
 



 
Figure 7: 5th eigenmode. 

Divorticular stack. 

 
Figure 8: 6th eigenmode. 

Trivorticular stack. 

 
Figure 9: 7th eigenmode. 
Quadrivorticular stack. 

 
With the spatial modes POD decomposition provides temporal coefficients associated 

(see 7). Fig. 10 shows those for modes 1st, 2nd and 5th modes (attractor, quadrivorticular 
structure and divorticular stack). If the first two modes are gazed, they turn out to be 
’asheared’ by a quarter a period, i.e., maxima of the 2nd coefficient take place where the first 
one meets zero. This phase delay can be proved by phase picture (Fig. 11). This allow to 
propose this mode to be visible in a pure flow (without decomposition), hence around the 
first mode coefficient’s root the second will be the most powerful mode. 

 
For a closer investigation spectra of the modes were made. Fig. 12 represents spectra for 

1st, 5th, 6th and 7th modes (i.e., the main one and vortices stacks). The spectrum of the 2nd 
mode is very close to that of the 1st one and is deliberately not shown; their main difference is 
in phase (see above). 

The spectra for the stack-like structures are discrete as well as that of the general flow, 
with the peaks being scattered along the frequency axis. This means that different modes 
corresponds different peaks of the spectra (as the modes have several peaks, they may partly 
overlap for different modes), which makes to think that the structures obtained (Fig. 7-9) are 
not accidental and result from the resonance cascade instability, hence this is a mechanism of 
spectrum saturation [20][17][18]. Our proposal is that these structures represent spatial 
resonances cascade, while the the spectral one is represented by collateral peaks on the 
spectrum (Fig. 4). 

 

 
Figure 10: POD temporal  

coefficients 
Figure 11: 1st, 2nd temporal coefficients 

phases 
 



 
Figure 12: POD temporal coefficients spectra 

4 Structure observation 
As we noticed while discussing POD component temporal coefficients phases, the 

coefficient for the 1st mode have a delay correspondingly that of the 2nd one of some quarter 
of their common period, and hence the maxima of the second one occur when the 1st mode 
coefficient is near zero, we probably can see the structure like those represented at Fig. 6 in 
pure solution (without POD). 

This proposal can be proved investigated flow streamlines picture evolution. Let’s 
consider developed flow with attractor formed. The picture supposed to be seen is that shown 
on Fig. 13. Here t = 450 s or 45T0 which is enough for the ain structure establishment. Still, 
we observe four-vortex structure (Fig. 14) which is visible every (𝑛/2 +  0.35) 𝑇0, 𝑛 ∈  ℕ. We 
emphasize that this is flow itself without any decomposition applied. This is how the 
hydrodynamical structures can be revealed after the prediction due to POD. 

 

 
Figure 13: Streamlines of developed flow, 

𝑡 =  450 s (45𝑇0). Main attractor  
structure 

Figure 14: Streamlines of developed flow, 
𝑡 =  453.5 s (45.35𝑇0). Quadrivorticular 

diagonal structure 
 
Unfortunately, we cannot obtain the same result for the vortex stack-like structures. The 

reason is evident — their modes have frequencies different from those of 1sn and 2nd modes. 
Besides, their energies are very low to be directly visible, unlike that of the 2nd mode which is 
comparable with the energy of the attractor mode. These two points make their observation 
in the undecomposed flow nearly impossible. 

5 Conclusions and Discussions 
Revealing hydrodynamical structure in a flow, especially in a specific one, requires a very 

detailed investigation, hence the flow can be noised with a turbulence, or structures 
themselves may turn out to be not intense enough, which makes the search to be complicated. 
Decomposition tools, like POD, can help in revealing them. In the case of attractor problem 



we have decomposed the flow into vortex-like modes. Some of them turned out to be 
connected with instability minor frequencies. After a spectral investigation of POD temporal 
coefficients we managed to detect one of the structure (beyond the well-known rhomboid 
structure) found visible in the flow without decomposition. These aspects lead us to an 
important conclusion: POD modes are not just formal basis but structures of some physical 
sense. This allows to use the decomposition not only for dimension reduction, but for search 
of real physical structure attending the flow. Such possibility may be useful for ordered but 
low-intense structures that remain hid behind the main structure of a great energy. This 
makes POD to be a powerful instrument, especially in turbulent flows with instability vortex 
cascade, which on the general plane may seem only turbulent relics but can turn out to form 
ordered vorticular structures. 
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